Акустический расчет системы вентиляции и кондиционирования в современных зданиях. Особенности акустического расчета на промышленных предприятиях Расчетная точка находится в помещении, обслуживаемом системой


Оптимизация расположения громкоговорителей в комнате прямоугольной формы

Для достижения высокого качества звуковоспроизведения, акустические характеристики комнаты для прослушивания необходимо приблизить к определенным оптимальн м значениям. Это достигается формированием "акустически правильной" геометрии помещения, а также с помощью специальной акустической отделки внутренних поверхностей стен и потолка.

Но очень часто приходится иметь дело с комнатой, форму которой изменить уже невозможно. При этом собственные резонансы помещения могут крайне негативно повлиять на качество звучания аппаратуры. Вважным инструментом для снижения влияния комнатных резонансов является оптимизация взаимного расположения акустических систем относительно друг друга, ограждающих конструкций и зоны прослушивания.

Предлагаемые калькуляторы предназначены для расчетов в прямоугольных симметричных помещениях с низким фондом звукопоглощения.


Применение на практике результатов данных расчетов позволит уменьшить влияние комнатных мод, улучшить тональный баланс и выровнять АЧХ системы "АС-комната" на низких частотах.
Необходимо отметить, что результаты расчетов не обязательно приводят к созданию "идеальной" звуковой сцены, они касаются только коррекции акустических дефектов, вызванных, прежде всего, влиянием нежелательных комнатных резонансов.
Но результаты расчетов могут стать хорошей отправной точкой для дальнейшего поиска оптимального месторасположения АС с точки зрения индивидуальных предпочтений слушателя.

Определение площадок первых отражений


Слушатель, находящийся в комнате для прослушивания музыки, воспринимает не только прямой звук, излучаемый акустическими системами, но и отражения от стен, пола и потолка. Интенсивные отражения от некоторых участков внутренних поверхностей комнаты (площадок первых отражений) взаимодействуют с прямым звуком АС, что приводит к изменению частотной характеристики звука, воспринимаемого слушателем. При этом на некоторых частотах происходит усиление звука, а некоторых его значительное ослабление. Этот акустический дефект, называемый "гребенчатой фильтрацией", приводит к нежелательному "окрашиванию" звука.

Управление интенсивностью ранних отражений позволяет улучшить качество звуковой сцены, сделать звучание АС более ясным и детальн м. Наиболее важны ранние отражения от площадок, расположенных на боковых стенах и потолке между зоной прослушивания и АС. Кроме того, большое влияние на качество звука могут оказать отражения от тыловой стены, если зона прослушивания расположена к ней слишком близко.

На участках расположения площадок ранних отражений рекомендуется размещать звукопоглощающие материалы или звукорассеивающие конструкции (акустические диффузоры). Акустическая отделка площадок ранних отражений должна быть адекватна частотному диапазону, в котором более всего наблюдаются акустические искажения (эффект гребенчатой фильтрации).

Линейные размеры применяемых акустических покрытий должны быть на 500-600 мм больше размеров площадок первых отражений. Параметры необходимой акустической отделки в каждом конкретном случае рекомендуется согласовать с инженером-акустиком.

"

Расчет
резонатора Гельмгольца

Резонатор Гельмгольца является колебательной системой с одной степенью свободы, поэтому он обладает способностью отзываться на одну определенную частоту, соответствующую его собственной частоте.

Характерной особенностью резонатора Гельмгольца является его способность совершать низкочастотные собственные колебания, длина волны которых значительно больше размеров самого резонатора.

Это свойство резонатора Гельмгольца используется в архитектурной акустике при создании так называемых щелевых резонансных звукопоглотителей (Slot Resonator). В зависимости от конструкции резонаторы Гельмгольца хорошо поглощают звук на средних и низких частотах.

В общем случае конструкция поглотителя представляет собой деревянный каркас, смонтированный на поверхности стены или потолка. На каркасе закрепляется набор деревянных планок, между которыми оставляются зазоры. Внутреннее пространство каркаса заполняется звукопоглощающим материалом. Резонансная частота поглощения зависит от сечения деревянных планок, глубины каркаса и эффективности звукопоглощения изоляционного материала.

fo = (c/(2*PI))*sqrt(r/((d*1.2*D)*(r+w))) , где

w - ширина деревянной планки,

r - ширина зазора,

d - толщина деревянной планки,

D - глубина каркаса,

с - скорость звука в воздухе.

Если в одной конструкции применять планки различной ширины и закреплять их с неодинаков ми зазорами, а также выполнять каркас с переменной глубиной, можно построить поглотитель, эффективно работающий в широкой полосе частот.

Конструкция резонатора Гельмгольца достаточно проста и может быть собрана из недорогих и доступных материалов непосредственно в музыкальной комнате или в студийном помещении во время производства строительных работ.

"

Расчет панельного НЧ-поглотителя конверсионного типа (НЧКП)

Панельный поглотитель конверсионного типа является достаточно популярным средством акустической обработки музыкальных комнат благодаря простой конструкции и довольно высокой эффективности поглощения в области низких частот. Панельный поглотитель представляет собой жесткий каркас-резонатор с замкнутым объемом воздуха, герметично закрытый гибкой и массивной панелью (мембраной). В качестве материала мембраны, обычно применяют листы фанеры или MDF. Во внутреннее пространство каркаса помещается эффективный звукопоглощающий материал.

Звуковые колебания приводят в движение мембрану (панель) и присоединенный объем воздуха. При этом кинетическая энергия мембраны преобразуется в тепловую энергию за счет внутренних потерь в материале мембраны, а кинетическая энергия молекул воздуха преобразуется в тепловую энергию за счет вязкого трения в слое звукопоглотителя. Поэтому мы называем такой тип поглотителя конверсионным.

Поглотитель представляет собой систему масса-пружина, поэтому он обладает резонансной частотой, на которой его работа наиболее эффективна. Поглотитель может быть настроен на желаемый диапазон частот путем изменения его формы, объема и параметров мембраны. Точн й расчет резонансной частоты панельного поглотителя является сложной математической задачей, и результат зависит от большого количества исходных параметров: способа закрепления мембраны, её геометрических размеров, конструкции корпуса, характеристик звукопоглотителя и т.п.

Тем не менее, использование некоторых допущений и упрощений позволяет достичь приемлемого практического результата.

В таком случае, резонансную частоту fo можно описать следующей оценочной формулой:

fo=600/sqrt(m*d) , где

m - поверхностная плотность мембраны, кг/кв.м

d - глубина каркаса, см

Данная формула справедлива для случая, когда внутреннее пространство поглотителя заполнено воздухом. Если внутрь поместить пористый звукопоглощающий материал, то на частотах ниже 500 Гц процессы в системе перестают быть адиабатическими и формула трансформируется в другое соотношение, которое и применяется в он-лайн калькуляторе "Расчет панельного поглотителя":

fo=500/sqrt(m*d)

Заполнение внутреннего объема конструкции пористным звукопоглощающим материалом снижает добротность (Q) поглотителя, что приводит к расширению его рабочего диапазона и увеличению эффективности поглощения на НЧ. Слой звукопоглотителя не должен прикасаться к внутренней поверхности мембраны, также желательно оставить воздушный зазор между звукопоглотителем и задней стенкой устройства.
Теоретический рабочий диапазон частот панельного поглотителя расположен в пределах +/- одна октава относительно расчетной резонансной частоты.

Необходимо отметить, что в большинстве случаев описанного упрощенного подхода вполне достаточно. Но иногда решение ответственной акустической задачи требует более точного определения резонансных характеристик панельного поглотителя с учетом сложного механизма изгибных деформаций мембраны. Это требует проведения более точных и достаточно громоздких акустических расчетов.

"

Расчет размеров студийных помещений в соответствии с рекомендациями EBU/ITU, 1998

За основу взята методика, разработанная в 1993 году Робертом Волкером (Robert Walker) после серии исследований, проведенных в инженерном департаменте ВВС (Research Department Engineering Division of ВВС). В результате была предложена формула, регулирующая соотношение линейных размеров помещения в достаточно широких пределах.

В 1998 году данная формула была принята в качестве стандарта Европейским Радиовещательн м Союзом (European Broadcasting Union, Technical Recommendation R22-1998) и Международным Телекоммуникационным Союзом (International Telecommunication Union Recommendation ITU-R BS.1116-1, 1998) и рекомендована к применению при строительстве студийных помещений и музыкальных комнат прослушивания.
Соотношение выглядит следующим образом:

1.1w/h <= l/h <= 4.5w/h - 4,

l/h < 3, w/h < 3

где l - длина, w - ширина, и h - высота помещения.

Кроме того, должны быть исключены целочисленные соотношения длинны и ширины помещения к его высоте в пределах +/- 5%.

Все размеры должны соответствовать расстояниям между основными ограждающими конструкциями помещения.

"

Расчет диффузора Шредера

Проведение расчетов в предлагаемом калькуляторе подразумевает ввод данных в диалоговом режиме и дальнейшее выведение результатов на экран в виде диаграммы. Расчет времени реверберации производится по методике, изложенной в СНиП 23-03-2003 "Защита от шума" в октавных полосах частот по формуле Эйринга (Carl F. Eyring):

Т (сек) = 0,163*V / (−ln(1−α)*S + 4*µ*V)

V - объем зала, м3
S - суммарная площадь всех ограждающих поверхностей зала, м2
α - средний коэффициент звукопоглощения в помещении
µ - коэффициент, учитывающий поглощение звука в воздухе

Полученное расчетное время реверберации графически сравнивается с рекомендуемым (оптимальным) значением. Оптимальным называют такое время реверберации, при котором звучание музыкального материала в данном помещении будет наилучшим или при котором разборчивость речи будет наивысшей.

Оптимальные значения времени реверберации нормируются соответствующими международными стандартами:

DIN 18041 Acoustical quality in small to medium-sized rooms, 2004
EBU Tech. 3276 - Listening conditions for sound programme, 2004
IEC 60268-13 (2nd edition) Sound system equipment - Part 13, 1998

Инженерно-строительный журнал, N 5, 2010 год
Рубрика: Технологии

Д.т.н., профессор И.И.Боголепов

ГОУ Санкт-Петербургский государственный политехнический университет
и ГОУ Санкт-Петербургский государственный морской технический университет;
магистр А.А.Гладких,
ГОУ Санкт-Петербургский государственный политехнический университет


Система вентиляции и кондиционирования воздуха (СВКВ) - важнейшая система для современных зданий и сооружений. Однако, кроме необходимого качественного воздуха, система транспортирует в помещения шум. Он идет от вентилятора и других источников, распространяется по воздуховоду и излучается в вентилируемое помещение. Шум несовместим с нормальным сном, учебным процессом, творческой работой, высокопроизводительным трудом, полноценным отдыхом, лечением, получением качественной информации . В строительных нормах и правилах России сложилась такая ситуация. Метод акустического расчета СВКВ зданий, использовавшийся в старом СНиПе II-12-77 "Защита от шума " , устарел и не вошел поэтому в новый СНиП 23-03-2003 "Защита от шума " . Итак, старый метод устарел, а нового общепризнанного пока нет . Ниже предлагается простой приближенный способ акустического расчета СВКВ в современных зданиях, разработанный с использованием лучшего производственного опыта, в частности, на морских судах .

Предлагаемый акустический расчет основан на теории длинных линий распространения звука в акустически узкой трубе и на теории звука помещений с практически диффузным звуковым полем . Он выполняется с целью оценки уровней звукового давления (далее - УЗД) и соответствия их значений действующим нормам допустимого шума . Он предусматривает определение УЗД от СВКВ вследствие работы вентилятора (далее - "машина") для следующих типовых групп помещений:

1) в помещении, где расположена машина;

2) в помещениях, через которые воздуховоды проходят транзитом;

3) в помещениях, обслуживаемых системой.

Исходные данные и требования

Расчет, проектирование и контроль защиты людей от шума предлагается выполнять для наиболее важных для человеческого восприятия октавных полос частот, а именно: 125 Гц, 500 Гц и 2000 Гц. Октавная полоса частот 500 Гц является среднегеометрической величиной в диапазоне нормируемых по шуму октавных полос частот 31,5 Гц - 8000 Гц . Для постоянного шума расчет предусматривает определение УЗД в октавных полосах частот по уровням звуковой мощности (УЗМ) в системе. Величины УЗД и УЗМ связаны общим соотношением = - 10, где - УЗД относительно порогового значения 2·10 Н/м; - УЗМ относительно порогового значения 10 Вт; - площадь распространения фронта звуковых волн, м.

УЗД должны определяться в расчетных точках нормируемых по шуму помещений по формуле = + , где - УЗМ источника шума. Величина , учитывающая влияние помещения на шум в нем, рассчитывается по формуле:

где - коэффициент, учитывающий влияние ближнего поля; - пространственный угол излучения источника шума, рад.; - коэффициент направленности излучения, принимается по экспериментальным данным (в первом приближении равен единице); - расстояние от центра излучателя шума до расчетной точки в м; = - акустическая постоянная помещения, м; - средний коэффициент звукопоглощения внутренних поверхностей помещения; - суммарная площадь этих поверхностей, м; - коэффициент, учитывающий нарушение диффузного звукового поля в помещении.

Указанные величины, расчетные точки и нормы допустимого шума регламентируются для помещений различных зданий СНиПом 23-03-2003 "Защита от шума " . Если расчетные значения УЗД превосходят норму допустимого шума хотя бы в одной из указанных трех полос частот, то необходимо спроектировать мероприятия и средства снижения шума.

Исходными данными для акустического расчета и проектирования СВКВ являются:

- компоновочные схемы, применяемые в конструкции сооружения; размеры машин, воздуховодов, регулирующей арматуры, колен, тройников и воздухораспределителей;

- скорости движения воздуха в магистралях и ответвлениях - по данным технического задания и аэродинамического расчета;

- чертежи общего расположения помещений, обслуживаемых СВКВ - по данным строительного проекта сооружения;

- шумовые характеристики машин, регулирующей арматуры и воздухораспределителей СВКВ - по данным технической документации на эти изделия.

Шумовыми характеристиками машины являются следующие уровни УЗМ воздушного шума в октавных полосах частот в дБ: - УЗМ шума, распространяющегося от машины в воздуховод всасывания; - УЗМ шума, распространяющегося от машины в воздуховод нагнетания; - УЗМ шума, излучаемого корпусом машины в окружающее пространство. Все шумовые характеристики машины определяются в настоящее время на основании акустических измерений по соответствующим национальным или международным стандартам и другим нормативным документам .

Шумовые характеристики глушителей, воздуховодов, регулируемой арматуры и воздухораспределителей представлены УЗМ воздушного шума в октавных полосах частот в дБ:

- УЗМ шума, генерируемого элементами системы при прохождении потока воздуха через них (генерация шума); - УЗМ шума, рассеиваемого или поглощаемого в элементах системы при прохождении через них потока звуковой энергии (снижение шума).

Эффективность генерации и снижения шума элементами СВКВ определяются на основании акустических измерений. Подчеркнем, что значения величин и должны быть указаны в соответствующей технической документации.

Должное внимание уделяется при этом точности и надежности акустического расчета, которые закладываются в погрешность результата величинами и .

Расчет для помещений, где установлена машина

Пусть в помещении 1, где установлена машина, имеется вентилятор, уровень звуковой мощности которого, излучаемый в трубопровод всасывания, нагнетания и через корпус машины, есть величины в дБ , и . Пусть у вентилятора на стороне трубопровода нагнетания установлен глушитель шума с эффективностью глушения в дБ (). Рабочее место находится на расстоянии от машины. Разделяющее помещение 1 и помещение 2 стена находится на расстоянии от машины. Постоянная звукопоглощения помещения 1: = .

Для помещения 1 расчет предусматривает решение трех задач.

1-я задача . Выполнение нормы допустимого шума .

Если всасывающий и нагнетательный патрубки выведены из помещения машины, то расчет УЗД в помещении, где она расположена, производится по следующим формулам.

Октавные УЗД в расчетной точке помещения определяются в дБ по формуле:

где - УЗМ шума, излучаемого корпусом машины с учетом точности и надежности с помощью . Величина , указанная выше, определяется по формуле:

Если в помещении размещены n источников шума, УЗД от каждого из которых в расчетной точке равны , то суммарный УЗД от всех их определяется по формуле:

В результате акустического расчета и проектирования СВКВ для помещения 1, где установлена машина, должно быть обеспечено выполнение в расчетных точках норм допустимого шума .

2-я задача. Расчет величины УЗМ в воздуховоде нагнетания из помещения 1 в помещение 2 (помещение, через который воздуховод проходит транзитом), а именно величины в дБ производится по формуле

3-я задача. Расчет величины УЗМ, излучаемой стенкой площадью со звукоизоляцией помещения 1 в помещение 2, а именно величины в дБ, выполняется по формуле

Таким образом, результатом расчета в помещении 1 является выполнение норм по шуму в этом помещении и получение исходных данных для расчета в помещении 2.

Расчет для помещений, через которые воздуховод проходит транзитом

Для помещения 2 (для помещений, через которые воздуховод проходит транзитом) расчет предусматривает решение следующих пяти задач.

1-я задача. Расчет звуковой мощности, излучаемой стенками воздуховода в помещение 2, а именно определение величины в дБ по формуле:

В этой формуле: - см. выше 2-ю задачу для помещения 1;

=1,12 - эквивалентный диаметр сечения воздуховода с площадью поперечного сечения ;

- длина помещения 2.

Звукоизоляция стенок цилиндрического воздуховода в дБ рассчитывается по формуле:

где - динамический модуль упругости материала стенки воздуховода, Н/м;

- внутренний диаметр воздуховода в м;

- толщина стенки воздуховода в м;


Звукоизоляция стенок воздуховодов прямоугольного сечения рассчитывается по следующей формуле в ДБ:

где = - масса единицы поверхности стенки воздуховода (произведение плотности материала в кг/м на толщину стенки в м);

- среднегеометрическая частота октавных полос в Гц.

2-я задача. Расчет УЗД в расчетной точке помещения 2, находящейся на расстоянии от первого источника шума (воздуховод) выполняется по формуле, дБ:

3-я задача. Расчет УЗД в расчетной точке помещения 2 от второго источника шума (УЗМ, излучаемой стеной помещения 1 в помещение 2, - величина в дБ) выполняется по формуле, дБ:

4-я задача. Выполнение нормы допустимого шума .

Расчет ведется по формуле в дБ:

В результате акустического расчета и проектирования СВКВ для помещения 2, через которое воздуховод проходит транзитом, должно быть обеспечено выполнение в расчетных точках норм допустимого шума . Это первый результат.

5-я задача. Расчет величины УЗМ в воздуховоде нагнетания из помещения 2 в помещение 3 (помещение, обслуживаемое системой), а именно величины в дБ по формуле:

Величина потерь на излучение звуковой мощности шума стенками воздуховодов на прямолинейных участках воздуховодов единичной длины в дБ/м представлена в таблице 2. Вторым результатом расчета в помещении 2 является получение исходных данных для акустического расчета системы вентиляции в помещении 3.

Расчет для помещений, обслуживаемых системой

В помещениях 3, обслуживаемых СВКВ (для которых система в конечном счете и предназначена), расчетные точки и нормы допустимого шума принимаются в соответствии со СНиП 23-03-2003 "Защита от шума " и техническим заданием.

Для помещения 3 расчет предусматривает решение двух задач.

1-я задача. Расчет звуковой мощности, излучаемой воздуховодом через выпускное воздухораспределительное отверстие в помещение 3, а именно определение величины в дБ, предлагается выполнять следующим образом.

Частная задача 1 для низкоскоростной системы со скоростью воздуха v << 10 м/с и = 0 и трех типовых помещений (см. ниже пример акустического расчета) решается с помощью формулы в дБ:

Здесь



() - потери в глушителе шума в помещении 3;

() - потери в тройнике в помещении 3 (см. ниже формулу);

- потери в результате отражения от конца воздуховода (см. таблицу 1 ).

Общая задача 1 состоит в решении для многих из трех типовых помещений с помощью следующей формулы в дБ:



Здесь - УЗМ шума, распространяющегося от машины в воздуховод нагнетания в дБ с учетом точности и надежности величиной (принимается по данным технической документации на машины);

- УЗМ шума, генерируемого воздушным потоком во всех элементах системы в дБ (принимается по данным технической документации на эти элементы);

- УЗМ шума, поглощающегося и рассеивающегося при прохождении потока звуковой энергии через все элементы системы в дБ (принимается по данным технической документации на эти элементы);

- величина, учитывающая отражение звуковой энергии от концевого выходного отверстия воздуховода в дБ, принимается по таблице 1 (эта величина равна нулю, если уже включает в себя );

- величина, равная 5 дБ для низкоскоростной СВКВ (скорость воздуха в магистралях меньше 15 м/с), равная 10 дБ для среднескоростной СВКВ (скорость воздуха в магистралях меньше 20 м/с) и равная 15 дБ для высокоскоростной СВКВ (скорость в магистралях меньше 25 м/с).

Таблица 1. Величина в дБ. Октавные полосы

Акустичекие расчеты

Среди проблем оздоровления окружающей среды борьба с шумами является одной из актуальнейших. В крупных городах шум является одним из основных физических факторов, формирующих условия среды обитания.

Рост промышленного и жилищного строительства, бурное развитие различных видов транспорта, все большее применение в жилых и общественных зданиях сантехнического и инженерного оборудования, бытовой техники привели к тому, что уровни шума в селитебных зонах города стали сравнимы с уровнями шумов на производстве.

Шумовой режим крупных городов формируется главным образом автомобильным и рельсовым транспортом, составляющим 60-70% всех шумов.

Заметное влияние на уровень шума оказывает увеличение интенсивности воздушных перевозок, появление новых мощных самолетов и вертолетов, а также железнодорожный транспорт, открытые линии метро и метро мелкого заложения.

Вместе с тем, в некоторых крупных городах, где предпринимаются меры по улучшению шумовой обстановки наблюдается снижение уровней шума.

Шумы бывают акустические и неакустичекие, какова их разница?

Акустический шум определяется как совокупность различных по силе и частоте звуков, возникающих в результате колебательного движения частиц в упругих средах (твердых, жидких, газообразных).

Неакустические шумы - Радиоэлектронные шумы - случайные колебания токов и напряжений в радиоэлектронных устройствах, возникают в результате неравномерной эмиссии электронов в электровакуумных приборах (дробовой шум, фликкер-шум), неравномерности процессов генерации и рекомбинации носителей заряда (электронов проводимости и дырок) в полупроводниковых приборах, теплового движения носителей тока в проводниках (тепловой шум), теплового излучения Земли и земной атмосферы, а также планет, Солнца, звёзд, межзвёздной среды и т. д. (шумы космоса).

Акустический расчёт, расчет уровня шума.

В процессе строительства и эксплуатации различных объектов проблемы борьбы с шумом являются неотъемлемой частью охраны труда и защиты здоровья населения. Выступать источниками могут машины, транспортные средства, механизмы и другое оборудование. Шум, его величина воздействия и вибраций на человека зависит от уровня звукового давления, частотных характеристик.

Под нормированием шумовых характеристик понимают установление ограничений на значения этих характеристик, при которых шум, воздействующий на людей, не должен превышать допустимых уровней, регламентированных действующими санитарными нормами и правилами.

Целями акустического расчета являются:

Выявление источников шума;

Определение их шумовых характеристик;

Определение степени влияния источников шума на нормируемые объекты;

Расчет и построение индивидуальных зон акустического дискомфорта источников шума;

Разработка специальных шумозащитных мероприятий, обеспечивающих требуемый акустический комфорт.

Установка систем вентиляции и кондиционирования уже считается естественной потребностью в любом здании (будь оно жилое или административное), акустический расчет должен выполняться и для помещений подобного типа. Так, в случае не проведения расчета уровня шума, может оказаться, что в помещении очень низкий уровень звукопоглощения, а это очень усложняет процесс общения людей в нем.

Поэтому прежде чем устанавливать в помещении системы вентиляции, провести акустический расчет нужно обязательно. Если окажется, что для помещения характерны плохие акустические свойства, необходимо предложить провести ряд мероприятий, по улучшению акустической обстановки в помещении. Поэтому акустические расчеты выполняются и на установку бытовых кондиционеров.

Акустический расчет чаще всего проводится для объектов, которые имеют сложную акустику или отличаются повышенным требованиям к качеству звука.

Звуковые ощущения возникают в органах слуха при воздействии на них звуковых волн в диапазоне от 16 Гц до 22 тыс. Гц. Звук распространяется в воздухе со скоростью 344 м/с, за 3 сек. 1 км.

Величина порога слышимости зависит от частоты ощущаемых звуков и равна 10-12 Вт/м 2 на частотах близких 1000 Гц. Верхней границей является порог болевого ощущения, который в меньшей степени зависит от частоты и лежит в пределах 130 - 140 дБ (на частоте 1000 Гц по интенсивности 10 Вт/м 2, по звуковому давления).

Соотношение уровня интенсивности и частоты определяет ощущение громкости звука, т.е. звуки, имеющие различную частоту и интенсивность, могут оцениваться человеком как равногромкие.

При восприятии звуковых сигналов на определенном акустическом фоне может наблюдаться эффект маскировки сигнала.

Эффект маскировки может отрицательно сказываться в акустических индикаторах и может быть использован для улучшения акустической обстановки, т.е. в случае маскировки высокочастотного тона низкочастотным, который менее вреден для человека.

Порядок выполнения акустического расчета.

Для выполнения акустического расчета потребуются следующие данные:

Размеры помещения, для которого будет проводиться расчет уровня шума;

Основные характеристики помещения и его свойства;

Спектр шума от источника;

Характеристика преграды;

Данные о расстоянии от центра источника шума до точки акустического расчета.

При расчете, для начала определяются источники шума и их характерные свойства. Далее на исследуемом объекте выбираются точки, в которых будут проводиться расчеты. В выбранных точках объекта проводится расчет предварительного уровня звукового давления. Основываясь на полученных результатах, выполняется расчет по снижению шума до требуемых норм. Получив все необходимые данные, выполняется проект по разработке мероприятий, благодаря которым будет снижен уровень шума.

Правильно выполненный акустический расчет является залогом отличной акустики и комфорта в помещении любого размера и конструкции.

На основе выполненного акустического расчета можно предлагать следующие мероприятия для снижения уровня шума:

* установка звукоизолирующих конструкций;

* использование уплотнений в окнах, дверях, воротах;

* использование конструкций и экранов, которые поглощают звук;

*осуществление планировки и застройки селитебной территории в соответствии со СНиП;

* применение глушителей шума в вентиляционных системах и системах кондиционирования.

Проведение акустического расчета.

Работы по расчету уровней шума, оценки акустического (шумового) воздействия, а также проектирование специализированных шумозащитных мероприятий, должны осуществляться специализированной организацией, имеющей соответствующую область.

шум акустический расчет измерение

В самом простом определении основная задача акустического расчета - это оценка уровня шума, создаваемого источником шума в заданной расчетной точке с установленным качеством акустического воздействия.

Процесс проведения акустического расчета состоит из следующих основных этапов:

1. Сбор необходимых исходных данных:

Характер источников шума, режим их работы;

Акустические характеристики источников шума (в диапазоне среднегеометрических частот 63-8000 Гц);

Геометрические параметры помещения, в котором расположены источники шума;

Анализ ослабленных элементов огорождающих конструкции, через которые шум будет проникать в окружающую среду;

Геометрические и звукоизоляционные параметры ослабленных элементов огорождающих конструкций;

Анализ близлежащих объектов с установленным качеством акустического воздействия, определений допустимых уровней звука для каждого объекта;

Анализ расстояний от внешних источников шума до нормируемых объектов;

Анализ возможных экранирующих элементов на пути распространения звуковой волны (застройка, зеленые насаждения и т.д.);

Анализ ослабленных элементов огорождающих конструкций (оконные проемы, двери и т.д.), через которые шум будет проникать в нормируемые помещения, выявление их звукоизоляционной способности.

2. Акустический расчет производится на основании действующих методических указаний и рекомендаций. В основном это «Методики расчета, нормативы».

В каждой расчетной точке необходимо производить суммирование всех имеющихся источников шума.

Результатом акустического расчета являются некие значения (дБ) в октавных полосах со среднегеометрическими частотами 63-8000 Гц и эквивалентное значение уровня звука (дБА) в расчетной точке.

3. Анализ результатов расчета.

Анализ полученных результатов осуществляется сравнением значений, полученных в расчетной точке с установленными Санитарными нормами.

При необходимости, следующим этапом проведения акустического расчета может быть проектирование необходимых шумозащитных мероприятий, которые позволят снизить акустическое воздействие в расчетных точках до допустимого уровня.

Проведение инструментальных измерений.

Помимо акустических расчетов, можно провести расчет инструментальных измерений уровней шума любой сложности, в том числе:

Измерение шумового воздействия существующих систем вентиляции и кондиционирования для офисных зданий, частных квартир и т.д.;

Осуществление измерений уровней шума для аттестации рабочих мест;

Проведение работ по инструментальному измерению уровней шума в рамках проекта;

Проведение работ по инструментальному измерению уровней шума в рамках технических отчетов при утверждении границ СЗЗ;

Осуществление любых инструментальных измерений шумового воздействия.

Проведение инструментальных замеров уровней шума производится специализированной мобильной лабораторией с применением современного оборудования.

Сроки выполнения акустического расчета. Сроки выполнения работы зависят от объема расчетов и измерений. Если необходимо произвести акустический расчет для проектов жилых застроек или административных объектов, то они выполняются в среднем 1 - 3 недели. Акустический расчет для крупных или уникальных объектов (театры, органные залы) занимает больше времени, основываясь на предоставленных исходных материалах. Кроме того, на срок работы во многом влияют количество исследуемых источников шума, а также внешние факторы.

Общие технические и организационные методы борьбы с шумом и вибрациями на производстве

Борьба с шумом и вибрациями на промышленном предприятии - это комплекс инженерно-технических мероприятий. Выявление источников и причин возникновения шума и вибраций должно быть совмещено с регистрацией и изучением их спектров. Только опираясь на исследования амплитудно-частотных характеристик, можно наметить и провести в жизнь технические мероприятия, направленные на устранение причин возникновения вибраций и шума. Расстановка оборудования в цехах должна производиться не только с учетом технологического процесса, удобства монтажа, ремонта, но и с учетом требований обеспечения здоровых условий труда.

Шумное оборудование следует группировать отдельно и устанавливать или в изолированном помещении, или в отдельной части цеха со звукоизолирующими или экранирующими перегородками.

При разработке технологических процессов, а также при проектировании участков, цехов, оборудования выполняется расчет ожидаемых шумовых полей в местах длительного пребывания людей.

Для этого необходимо выполнить акустический расчет, который включает:

· выявление источников шума и определение их шумовых характеристик;

· выбор расчетных точек в помещении, для которых производится расчет допустимых уровней звукового давления для этих точек;

· определение ожидаемых уровней звукового давления в расчетных точках до осуществления мероприятий по снижению шума с учетом снижения уровней звуковой мощности по пути распространения шума;

· определение требуемого снижения уровня звукового давления в расчетных точках;

· выбор мероприятий для обеспечения требуемого снижения уровней звукового давления в расчетных точках;

· расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок, звукоизолирующих кожухов и т. п.).

В начале расчета необходимо выявить все источники шума в производственных помещениях, обратив особое внимание на особо мощные источники. Шумовые характеристики оборудования и установок указываются заводом - изготовителем в прилагаемой технической документации.

Расчетные точки внутри помещения выбирают по ГОСТ 12.1.050-86. ССБТ «Методы измерения шума на рабочих местах».

В зоне постоянного пребывания людей выбирают не менее двух расчетных точек на высоте 1,5 м от уровня пола или рабочей площадки. При одном источнике шума в помещении первая расчетная точка берется на рабочем месте, при нескольких однотипных источниках - на рабочем месте в средней части помещения. Вторая расчетная точка берется в зоне постоянного пребывания людей, не связанных с работой оборудования. Если имеется несколько различных источников, отличающихся друг от друга по октавным уровням звуковой мощности более чем на 15 дБ хотя бы в одной октавной полосе, то на рабочих местах берутся две расчетные точки: у источников с максимальным и минимальным уровнями шума. Для цехов с групповым размещением однотипного оборудования расчетные точки берутся в центре каждой группы. Допустимые уровни звукового давления принимаются на основании ГОСТ 12.1.003-86, ССБТ «Шум. Общие требования безопасности».


Определение ожидаемых уровней звукового давления в расчетных точках .

При проведении расчетов ожидаемых уровней звукового давления в производственных помещениях наиболее часто расчетная точка находится в том же помещении, где установлен источник шума или в соседнем помещении.

А. Расчетная точка находится в помещении с одним источником шума.

L = L P +101g(Ф/4r 2 +4/B) (2.27)

где L - уровень звукового давления, дБ;

L p - уровень звуковой мощности источника шума, дБ;

Ф - фактор направленности источника для направления в точку наблюдения;

r-расстояние от геометрического центра источника до расчетной точки,м;

В - постоянная помещения (определяется по графику зависимости от объема помещения), м 2 ;

Б. Расчетная точка находится в помещении с несколькими источниками шума.

L=10lg(іФ/4г 2 +4/Ві) (2.28)

где i = 10 0,1 Lp і - сумма уровней звуковой мощности для i - того источника шума;

Lpi -уровень звуковой мощности i - того источника, дБ;

m i - число источников, находящихся в зоне прямой видимости из расчетной точки;

п - общее число источников в помещении с учетом среднего коэффициента одновременности работы оборудования.

В . Расчетная точка расположена в изолируемом от источников шума помещении.

Если источники (или один источник) шума расположены в смежном с изолируемым помещении, а шум проникает в изолируемое помещение через ограждающие конструкции, то ожидаемые уровни в расчетной точке определяются по формуле:

L = Lр.сум - 10 lg Ви + 10 lg Sorp - R - 10 lg Вш + 6, дБ (2.29)

Lp cyм=101g Lpi (2.30)

Lp сум - суммарный уровень звуковой мощности, излучаемый всеми источниками, находящимися в рассматриваемом шумном помещении, дБ;

m - общее количество источников шума; (если источник шума один, m = 1, Lp сум = Lp, где Lp - уровень звуковой мощности этого источника);

Ви, Вш - соответственно постоянные изолируемого и шумного помещений, м 2 ;

Sorp - площадь ограждения, м 2 ;

R-звукоизолирующая способность ограждения, через которое шум проникает в изолируемое помещение, дБ.

R = 201gQ + 201gf-54, (2.31)

где Q - вес 1-го м 2 ограждения заданной толщины, кг / м 2 ;

f- частота звука, Гц.

f rp =----------- , (2.32)

где f г p - частота волнового совпадения, от которой звукоизолирующая способность не будет возрастать, Гц;

с 1 - скорость распространения звуковых волн, м/с;

h - толщина преграды, см.

Определение требуемого снижения уровней звукового давления

Требуемое снижение уровней звукового давления L определяется по формуле:

L= L-L доп ()

где L-измеренный уровень звукового давления на рабочих местах действующего предприятия, определенный в расчетных точках (см. п. 3);

L доп -допустимые по нормам уровни звукового давления, дБ по ГОСТ 12.1.003-86. «Шум. Общие требования безопасности».

Методы и средства коллективной и индивидуальной

защиты от шума

После получения требуемого снижения уровней звукового давления необходимо выбрать метод защиты от шума.

Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.

Методы относительно снижения шума следует предусматривать на стадии проектирования промышленных объектов и оборудования. Снижение шума можно достичь только путем обесшумливания всего оборудования с высоким уровнем шума.

Работу относительно обесшумливания действующего производственного оборудования в помещении начинают с составления шумовых карт и спектров шума, оборудования и производственных помещений, на основании которых выносится решение относительно направления работы.

Борьба с шумом в источнике его возникновения – наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.

Архитектурно-планировочный аспект коллективной защиты от шума – предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т.д.

Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой. Звукоизоляция также достигается путем расположения наиболее шумного объекта в отдельной кабине. Звукоизоляция достигается также путем расположения оператора в специальной кабине, откуда он наблюдает и руководит технологическим процессом. Звукоизолирующий эффект обеспечивается также установлением экранов и колпаков, что защищает рабочее место и человека от непосредственного влияния прямого звука.

Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Звукопоглощение используется при акустической обработке помещений.

Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Дополнительно к потолку могут подвешиваться звукопоглощающие щиты, конусы, кубы; устанавливаются резонаторные экраны, т.е. искусственные поглотители. Эффект акустической обработки больше в низких помещениях (где высота не превышает 6м). Акустическая обработка позволяет снизить шум на 8 дБА.

Уровень звука после применения звукопоглощающей облицовки рассчитывают по формуле:

L=10, (2.32)

А 1 =В ш S/ В ш +S, (2.35)

S – общая площадь всех поверхностей помещения


  • 1.1.5.Государственные нормативные акты об охране труда
  • 1.1.6.Ответственность за нарушение законодательства об охране труда
  • 1.1.7. Государственный надзор и общественный контроль за охраной труда
  • 1.1.8. Общественный контроль за соблюдением законодательства об охране труда
  • Полномочия и права профсоюзов в осуществлении контроля за соблюдением законодательства об охране труда
  • Уполномоченные наемными работниками лица по вопросам охраны труда
  • 1.1.9. Организационные вопросы охраны труда. Органы государственного управления охраной труда
  • 1.1.10. Служба охраны труда предприятия
  • 1.1.11. Комиссия по вопросам охраны труда предприятия
  • 1.1.12. Обучение по вопросам охраны труда
  • 1.1.13. Обучение по вопросам охраны труда при приеме на работу и в процессе работы
  • 1.1.14. Инструктажи по вопросам охраны труда
  • Порядок проведения инструктажей для работников
  • 1.1.15. Стажировка (дублирование) и допуск работников к работе
  • 1.1.16. Производственный травматизм и профессиональные заболевания
  • Специальное расследование несчастных случаев.
  • Расследование и учет хронических профессиональных заболеваний и отравлений.
  • Расследование и учет аварий *
  • 1.1.17. Методы анализа производственного травматизма и профзаболеваемости
  • Основные причины производственного травматизма и профзаболеваемостии мероприятия по их предупреждению
  • 1.1.18. Государственное страхование от несчастного случая и профессионального заболевания
  • Раздел № 2. Основы физиологии, гигиены труда и производственной санитарии
  • 2.1.Общие положения
  • 2.1.1. Законодательство в области гигиены труда
  • 2.1.2. Физиологические особенности различных видов деятельности
  • 2.1.3. Гигиеническая классификация труда
  • 2.2. Микроклимат производственных помещений
  • 2.2.1.Влияние параметров микроклимата на организм человека
  • 2.2.2. Нормализация параметров микроклимата
  • 2.3. Загрязнение воздуха производственных помещений
  • 2.3.1. Влияние вредных веществ на организм человека
  • 2.3.2. Нормирование вредных веществ
  • 2.3.3. Основные мероприятия по нормализации воздушной среды
  • 2.4. Вентиляция производственных помещений
  • 2.4.1. Назначение и классификация систем вентиляции
  • 2.4.2. Естественная вентиляция
  • 2.4.3. Искусственная вентиляция
  • Местная вентиляция
  • Методы расчета систем искусственной вентиляции
  • Определение выделений тепла. Расчет воздухообмена при проектировании общеобменной вентиляции и кондиционирования воздуха.
  • Характеристика остекления
  • 2.5. Организация производственного освещения
  • 2.5.1. Общие требования и рекомендации по организации производственного освещения Основные светотехнические понятия и единицы
  • 2.5.2. Организация естественного освещения
  • 2.5.3. Организация искусственного освещения
  • Расчет искусственного освещения
  • Методы расчета искусственного освещения.
  • 2.6.Производственный шум и методы борьбы с ним
  • Нормирование шума
  • 2.6.1. Общие методы борьбы с производственным шумом
  • Акустический расчет
  • 3 Раздел Основы техники безопасности
  • 1. Безопасность технологических процессов.
  • 2. Безопасность производственного оборудования.
  • 3. Обеспечение электробезопасности на промышленных предприятиях.
  • 4.Защита от статического электричества, в том числе и от атмосфер­ного электричества.
  • 5.Безопасность устройства и эксплуатации подъемно-транспортного оборудования.
  • 6. Безопасность использования сосудов и аппаратов, работающих под давлением (баллоны, паровые и водогрейные котлы, компрессорные установки, цистерны и др.).
  • Раздел 4. Пожарная безопасность
  • 4.1. Основные сведения о пожарной и взрывной безопасности
  • 4.2. Пожароопасность материалов и веществ
  • 4.3.Категории помещений и зданий и классы зон по пожарной и взрывной опасности
  • 4.3.1 Категории помещений и зданий по пожарной и взрывной опасности по онтп 24-86
  • 4.4. Тушение пожаров
  • Список рекомендуемой литературы
  • Раздел 1 Правовые и организационные вопросы охраны труда……..11
  • Раздел 2 Основы физиологии, гигиены труда и
  • Раздел 3 Основы техники безопасности……………………….......151
  • Раздел 4 Пожарная безопасность……………………………….....164
  • Акустический расчет

    Общие технические и организационные методы борьбы с шумом и вибрациями на производстве

    Борьба с шумом и вибрациями на промышленном предприятии - это комплекс инженерно-технических мероприятий. Выявление источников и причин возникновения шума и вибраций должно быть совмещено с регистрацией и изучением их спектров. Только опираясь на исследования амплитудно-частотных характеристик, можно наметить и провести в жизнь технические мероприятия, направленные на устранение причин возникновения вибраций и шума. Расстановка оборудования в цехах должна производиться не только с учетом технологического процесса, удобства монтажа, ремонта, но и с учетом требований обеспечения здоровых условий труда.

    Шумное оборудование следует группировать отдельно и устанавливать или в изолированном помещении, или в отдельной части цеха со звукоизолирующими или экранирующими перегородками.

    При разработке технологических процессов, а также при проектировании участков, цехов, оборудования выполняется расчет ожидаемых шумовых полей в местах длительного пребывания людей.

    Для этого необходимо выполнить акустический расчет, который включает:

      выявление источников шума и определение их шумовых характеристик;

      выбор расчетных точек в помещении, для которых производится расчет допустимых уровней звукового давления для этих точек;

      определение ожидаемых уровней звукового давления в расчетных точках до осуществления мероприятий по снижению шума с учетом снижения уровней звуковой мощности по пути распространения шума;

      определение требуемого снижения уровня звукового давления в расчетных точках;

      выбор мероприятий для обеспечения требуемого снижения уровней звукового давления в расчетных точках;

      расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок, звукоизолирующих кожухов и т. п.).

    В начале расчета необходимо выявить все источники шума в производственных помещениях, обратив особое внимание на особо мощные источники. Шумовые характеристики оборудования и установок указываются заводом - изготовителем в прилагаемой технической документации.

    Расчетные точки внутри помещения выбирают по ГОСТ 12.1.050-86. ССБТ «Методы измерения шума на рабочих местах».

    В зоне постоянного пребывания людей выбирают не менее двух расчетных точек на высоте 1,5 м от уровня пола или рабочей площадки. При одном источнике шума в помещении первая расчетная точка берется на рабочем месте, при нескольких однотипных источниках - на рабочем месте в средней части помещения. Вторая расчетная точка берется в зоне постоянного пребывания людей, не связанных с работой оборудования. Если имеется несколько различных источников, отличающихся друг от друга по октавным уровням звуковой мощности более чем на 15 дБ хотя бы в одной октавной полосе, то на рабочих местах берутся две расчетные точки: у источников с максимальным и минимальным уровнями шума. Для цехов с групповым размещением однотипного оборудования расчетные точки берутся в центре каждой группы. Допустимые уровни звукового давления принимаются на основании ГОСТ 12.1.003-86, ССБТ «Шум. Общие требования безопасности».

    Определение ожидаемых уровней звукового давления в расчетных точках .

    При проведении расчетов ожидаемых уровней звукового давления в производственных помещениях наиболее часто расчетная точка находится в том же помещении, где установлен источник шума или в соседнем помещении.

    А. Расчетная точка находится в помещении с одним источником шума.

    L = L P +101g(Ф/4r 2 +4/B) (2.27)

    где L - уровень звукового давления, дБ;

    L p - уровень звуковой мощности источника шума, дБ;

    Ф - фактор направленности источника для направления в точку наблюдения;

    r-расстояние от геометрического центра источника до расчетной точки,м;

    В - постоянная помещения (определяется по графику зависимости от объема помещения), м 2 ;

    Б. Расчетная точка находится в помещении с несколькими источниками шума.

    L=10lg(іФ/4г 2 +4/Ві) (2.28)

    где i = 10 0,1 Lp і - сумма уровней звуковой мощности для i - того источника шума;

    Lpi -уровень звуковой мощности i - того источника, дБ;

    m i - число источников, находящихся в зоне прямой видимости из расчетной точки;

    п - общее число источников в помещении с учетом среднего коэффициента одновременности работы оборудования.

    В . Расчетная точка расположена в изолируемом от источников шума помещении.

    Если источники (или один источник) шума расположены в смежном с изолируемым помещении, а шум проникает в изолируемое помещение через ограждающие конструкции, то ожидаемые уровни в расчетной точке определяются по формуле:

    L = Lр.сум - 10 lg Ви + 10 lg Sorp - R - 10 lg Вш + 6, дБ (2.29)

    Lp cyм=101g Lpi (2.30)

    Lp сум - суммарный уровень звуковой мощности, излучаемый всеми источниками, находящимися в рассматриваемом шумном помещении, дБ;

    m - общее количество источников шума; (если источник шума один, m = 1, Lp сум = Lp, где Lp - уровень звуковой мощности этого источника);

    Ви, Вш - соответственно постоянные изолируемого и шумного помещений, м 2 ;

    Sorp - площадь ограждения, м 2 ;

    R-звукоизолирующая способность ограждения, через которое шум проникает в изолируемое помещение, дБ.

    R = 201gQ + 201gf-54, (2.31)

    где Q - вес 1-го м 2 ограждения заданной толщины, кг / м 2 ;

    f- частота звука, Гц.

    f rp =----------- , (2.32)

    где f г p - частота волнового совпадения, от которой звукоизолирующая способность не будет возрастать, Гц;

    с 1 - скорость распространения звуковых волн, м/с;

    h - толщина преграды, см.

    Определение требуемого снижения уровней звукового давления

    Требуемое снижение уровней звукового давления L определяется по формуле:

    L= L-L доп ()

    где L-измеренный уровень звукового давления на рабочих местах действующего предприятия, определенный в расчетных точках (см. п. 3);

    L доп -допустимые по нормам уровни звукового давления, дБ по ГОСТ 12.1.003-86. «Шум. Общие требования безопасности».

    Методы и средства коллективной и индивидуальной

    защиты от шума

    После получения требуемого снижения уровней звукового давления необходимо выбрать метод защиты от шума.

    Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.

    Методы относительно снижения шума следует предусматривать на стадии проектирования промышленных объектов и оборудования. Снижение шума можно достичь только путем обесшумливания всего оборудования с высоким уровнем шума.

    Работу относительно обесшумливания действующего производственного оборудования в помещении начинают с составления шумовых карт и спектров шума, оборудования и производственных помещений, на основании которых выносится решение относительно направления работы.

    Борьба с шумом в источнике его возникновения – наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.

    Архитектурно-планировочный аспект коллективной защиты от шума – предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

    Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т.д.

    Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

    Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой. Звукоизоляция также достигается путем расположения наиболее шумного объекта в отдельной кабине. Звукоизоляция достигается также путем расположения оператора в специальной кабине, откуда он наблюдает и руководит технологическим процессом. Звукоизолирующий эффект обеспечивается также установлением экранов и колпаков, что защищает рабочее место и человека от непосредственного влияния прямого звука.

    Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Звукопоглощение используется при акустической обработке помещений.

    Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Дополнительно к потолку могут подвешиваться звукопоглощающие щиты, конусы, кубы; устанавливаются резонаторные экраны, т.е. искусственные поглотители. Эффект акустической обработки больше в низких помещениях (где высота не превышает 6м). Акустическая обработка позволяет снизить шум на 8 дБА.

    Уровень звука после применения звукопоглощающей облицовки рассчитывают по формуле:

    L=10, (2.32)

    где В – постоянная помещения, м 2 ;

    В 1 – постоянная помещения после акустической обработки, м 2 .

    В 1 =
    , (2.33)

    Где А 1 – эквивалентная площадь звукопоглощения поверхностями не занятыми звукопоглощающей облицовкой;

    - добавочное звукопоглощение, вносимое звукопоглощающей облицовкой;

    А 1 =(S-S обл) – эквивалентная площадь звукопоглощения поверхностями не занятыми звукопоглощающей облицовкой;

    - средний коэффициент звукопоглощения акустически обработанного помещения.

    = S обл обл, (2.34)

    S обл – площадь звукопоглощения облицовки;

    обл – реверберационный коэффициент звукопоглощающей облицовки.

    А 1 =В ш S/ В ш +S, (2.35)

    S – общая площадь всех поверхностей помещения

    =А 1
    /S (2.36)

    Просмотров