Исследования космических тел. Современные исследования космоса. Преждевременная смерть звезд


Вселенная – это, пожалуй, самое загадочное и таинственное, с чем приходится сталкиваться человеку. В космос людей манит возможность колонизации других планет и открытия неизвестных форм жизни. Современные учёные постоянно занимаются исследованиями космоса, и их открытия бывают действительно поразительными.

1. 20 миллиардов экзопланет


В 2013 году астрономы подтвердили наличие 20 миллиардов экзопланет в нашей Галактике Млечный Путь. Экзопланетами называют планеты, которые похожи на Землю (и, следовательно, на них может существовать жизнь). Учитывая, сколько миллиардов галактик есть во Вселенной, то количество планет, похожих на Землю, просто даже сложно представить.

2. Карликовая планета


Астрономы-любители во всем мире были огорчены в 2006 году, когда статус Плутона был понижен с планеты до карликовой планеты. Те, кто продолжал считать по-старому, были вознаграждены в 2015 году, когда космический аппарат New Horizons проходил мимо Плутона. Выяснилось, что это космическое тело является все же скорее планетой, поскольку Плутон имеет силу тяжести, достаточно сильную, чтобы удержать атмосферу и отклонять заряженные частицы солнечного ветра.

3. Столкновения золотых звезд


2013 год был фантастическим годом для астрономии. Астрономы обнаружили столкновение двух звезд, во время которого образовалось невероятное количество золота, весом во много раз больше массы нашей Луны.

4. Марсианские цунами


Ученые недавно опубликовали доказательства того, что когда-то массивные цунами, возможно, навсегда изменили марсианский пейзаж. Два метеоритных удара вызвали огромные приливные волны, которые поднялись в высоту на многие десятки метров.

5. Планета Годзилла

Земля является одной из самых больших скалистых планет, но в 2014 году ученые обнаружили планету в два раза больше по размеру и 17 раз тяжелее. Хотя планеты такого размера считались газовыми гигантами, эта планета, которую назвали Kepler10c, удивительно похожа на нашу. Ее в шутку назвали "Годзиллой".

6. Гравитационные волны


Альберт Эйнштейн объявил о том, что обнаружил гравитационные волны, еще в 1916 году, почти за сто лет до того, как ученые подтвердили их существование. Мир науки был в восторге от открытия, сделанного в 2015 году - пространство-время может пульсировать подобно стоячей воде в пруду, когда в нее бросить камень.

7. Формирование гор


Новые исследования обнаружили, как образовываются горы на Ио, вулканическом спутнике Юпитера. Хотя горы на Земле обычно формируются в виде длинных хребтов, горы на Ио в основном одиночные. На этом спутнике вулканическая активность настолько велика, что 12-сантиметровый слой расплавленной лавы покрывает его поверхность каждые 10 лет.

Учитывая такие быстрые темпы извержений, ученые пришли к выводу, что колоссальное давление на ядро Ио вызывает разломы, которые поднимаются к поверхности, чтобы "сбросить" избыточное давление.

8. Гигантское кольцо Сатурна


Астрономы недавно обнаружили огромное новое кольцо вокруг Сатурна. Расположенное в 3,7 – 11,1 миллионах километров от поверхности планеты, новое кольцо вращается в противоположном направлении по сравнению с другими кольцами.

Новое кольцо настолько разрежено, что в нем мог бы поместиться миллиард Земель. Поскольку кольцо довольно холодное (около -196 ° С), оно только недавно было обнаружено при использовании инфракрасного телескопа.

9. Умирающие звезды дарят жизнь


После того, как звезда сжигает весь водород в своем ядре, она расширяется во много раз по сравнению с ее нормальным размером. Когда она расширяется, то притягивает и поглощает близлежащие планеты. Ученые недавно обнаружили, что при этом на более отдаленных замороженных планетах может подняться температура настолько, что на них стала бы возможной жизнь.

В случае Солнечной системы, Солнце расширилось бы за орбиту Марса, а на спутниках Юпитера и Сатурна температура поднялась бы достаточно, чтобы на них возникла жизнь.

10. Старые звезды Вселенной


Несколько сотен миллионов лет - капля в море для Вселенной, чей возраст составляет 14 миллиардов лет. Самая старая звезда, известная людям, - SMSS J031300.36-670839.3 – ее возраст составляет невообразимые 13,6 млрд лет.

11. Кислород в космосе


Кислород, естественно, является чрезвычайно химически активным газом, что приводит к его взаимодействию с другими элементами, существующими во Вселенной. Обнаружение молекулярного кислорода - той же самой разновидности, которой дышат люди - в атмосфере известной кометы 67P углубило познания людей о космических газах и вселило надежду на то, что кислород может в других местах во Вселенной в форме, которую могут использовать люди.

12. Космическое чистилище


Астрономы назвали новую область космоса, обнаруженную зондом "Вояджер 1", Космическим чистилищем. Находится эта область за границей Солнечной системы и примечательна тем, что имеет магнитное поле в два раза сильнее, чем обычно. Это создает своеобразный барьер между Солнечной системой и открытым космосом: заряженные частицы, испускаемые Солнцем, замедляются и даже поворачивают назад, а излучение снаружи не попадает в Солнечную систему.

13. Флаги на Луне


Во время всех миссий "Аполлон", в ходе которых люди посещали Луну, на спутнике Земли устанавливали американские флаги. Поскольку, в соответствии с международным договором, никто не может владеть Луной, флаги должны были выцвести через несколько лет под влиянием космической радиации.

Те мне менее, когда Lunar Reconnaissance Orbiter навела свои телескопы на посадочные площадки "Аполлонов" в 2012 году, обнаружилось, что флаги до сих пор стоят.

14. Гиперактивная галактика


Галактика, в которой невероятно быстро образуются звезды, была обнаружена в 12,2 миллиардах световых лет от Земли в 2008 году. Названа она была "Беби-Бум" и считается самой активной из известной части Вселенной. В то время как в нашем Млечном Пути новая звезда рождается, в среднем, каждые 36 дней, в галактике "Бэби-Бум" новая звезда рождается каждые 2 часа.

15. Самое холодное место во Вселенной


Самое холодное место во Вселенной - Туманность Бумеранг, в которой тепло практически не регистрируется, температура там находится вблизи почти абсолютного нуля. Эта туманность ярко светится синим цветом из-за света, отражающегося от его пыли.

16. Пятнище, пятно, пятнышко..


Знаменитое Большое красное пятно на Юпитере сокращалось в течение всего прошлого века, и в настоящее время оно в два раза меньше своего первоначального размера. Сегодня на этой планете вблизи экватора можно наблюдать гигантский шторм, который никогда не прекращается. Ученые до сих пор не знают, что вызывает его.

17. Самая маленькая планета


Самая маленькая планета, которая была обнаружена на данный момент, была найдена в 2013 г. Планета, получившая название Kepler-37b, лишь немногим больше, чем наша Луна, но в три раза ближе к своей звезде, чем Меркурий к Солнцу. Благодаря этому, на ее поверхности царит настоящий ад - температура составляет 425 ° С.

18. Преждевременная смерть звезд


Некоторые звезды в области активного звездообразования, получившей название Туманность Киля, как было обнаружено в 2016 году, преждевременно умирают. Около половины звезд в этом месте пропускают в своем развитии стадию красного гиганта, тем самым сокращая свой жизненный цикл на миллионы лет. Неизвестно, что вызывает этот эффект, но он был замечен только у богатых натрием или бедных кислородом звезд.

19. Где нужно искать жизнь


Некоторые ученые полагают, что не нужно искать другие планеты, чтобы обнаружить жизнь, а скорее обращать внимание на их спутники. Проходя мимо Юпитера, его ледяная луна Европа "выстреливает" в воздух 6 800 кг воды в секунду из гейзеров на своем южном полюсе.

Ученые недавно разработали проект, в рамках которого зонд сможет легко проанализировать содержание этой воды, прежде чем она упадет обратно на поверхность планеты. Такие исследования могли бы помочь определить, существует ли жизнь на Европе.

20. Гигантская алмазная звезда


Звезда BPM 37093, которую часто называют "Люси", - белый карлик, расположенный примерно в 20 световых годах от Земли. Чем примечательна эта звезда, так это тем, что она в основном представляет собой гигантский алмаз размером с Луну.

21. Девятая планета


Хотя Плутон был "понижен в звании" до карликовой планеты, ученые полагают, что вполне может существовать массивная планета на орбите вокруг Солнца за Плутоном. Используя математические законы, ученые определили, что на удаленной орбите должна вращаться планета размером с Нептун, но ее до сих пор не нашли.

22. Шум вакуума


23. Самая яркая сверхновая


Обнаруженная в 2015 году звезда ASASSN-15lh является самой яркой когда-либо зарегистрированной сверхновой. Она светит более чем в 570 миллиардов раз сильнее Солнца. Что еще более странно, ученые обнаружили, что активность сверхновой выросла во второй раз примерно через два месяца после того, как звезда прошла свою пиковую яркость.

24. Астероид с кольцами


Орбитальные кольцевые системы характерны для массивных газовых гигантов, при этом кольца довольно редки среди других небесных тел. Ученые были очарованы, обнаружив кольца вокруг астероид Харикло. Астероид имеет два кольца, вероятно, образованные из замороженной воды.

25. Алкогольная комета


Комета Лавджой приводит в восторг астрономов и выпивох с тех пор, как ее впервые обнаружили в 2015 году. При изучении быстро летящего куска льда, ученые обнаружили, что комета выбрасывает тот же тип алкоголя, который пьют люди - со скоростью 500 бутылок вина в секунду.

Всем, кто интересуется наукой, любопытно будет узнать .

После высадки американцев на Луну очень многие люди на планете верили, что в начале XXI века уже никого не будут удивлять путешествия в космическом пространстве. Однако до такой реальности еще очень далеко. Несмотря на активную деятельность, ведущуюся в этом направлении, в ближайшее десятилетие вряд ли удастся реализовать подобный сценарий. Благодаря изучению космического пространства можно не только в будущем организовывать полеты на другие планеты, но и улучшить жизнь на Земле. Исследования в этой области позволяют получать ценные сведения, способствующие разработке новых технологий.

По словам астрономов, занимающихся изучением небесных тел, возможность столкновения Земли с астероидом велика. По их расчетам, раз в 10 тыс. лет такая вероятность может настичь нашу планету.

Небесное тело в виде астероида представляет серьезную угрозу для человечества. Если предположить, что его размеры будут равны габаритам футбольного поля, тогда после столкновения возникнут необратимые последствия. Такая катастрофа приведет к гибели людей на планете. С нами произойдет то, что случилось с динозаврами - вымирание. Поэтому ученые постоянно отслеживают движение астероидов в космическом пространстве. Это позволит сбить такое тело еще на подлете к планете. Конечно, придется использовать ядерные технологии. По крайней мере, мощного заряда хватит, чтобы опасный астероид изменил свою траекторию движения.

Если с Землей столкнется какое-нибудь космическое тело диаметром в 100 м, тогда на планете образуется огромная пылевая буря и погибнут леса. Выжившие люди будут обречены на голод. Поэтому существует большая вероятность полного уничтожения человечества.

Количество ценных металлов на Земле ежегодно уменьшается. Поэтому людям в будущем рано или поздно придется добывать полезные ископаемые на других планетах. Однако для достижения поставленных задач обязательно нужно будет использовать новые технологии. С их помощью придется создать космических корабли, способные доставлять на другие планеты хотя бы роботизированное оборудование, а в обратном направлении - золото, платину, серебро и так далее. Для обеспечения транспортировки техники и сырья на дальние расстояния не подойдут двигатели, используемые в настоящее время. Поэтому космические исследования 21 века ведутся в области ядерных технологий. Они, возможно, позволят создать действительно эффективный ядерный двигатель, с помощью которого существенно сократится время перелета между космическими телами.

Некоторые компании уже ведут исследования относительно добычи полезных ископаемых, например, на астероидах. Некоторые ученые даже утверждают, что в относительно ближайшем будущем появится такая профессия, как космический шахтер. Всего скорее, первый подобный специалист будет работать на Луне. На нашем спутнике, можно добывать гелий-3. Он уже сегодня применяется для МРТ. Гелий-3 также предполагается использовать в качестве топлива для АЭС. В настоящее время стоимость данного вещества составляет 5000 американских долларов за 1 л. Помимо гелия-3, на Луне также можно добывать тантал. Он представляет собой редкоземельный элемент. Его используют при изготовлении солнечных батарей и других высокотехнологичных приборов.

Исследования в области космоса повлияли на появление большого количества медицинских препаратов, использующихся непосредственно на Земле. Особенно много было сделано открытий в области лекарств, помогающих в борьбе против рака. Был также разработан новый способ введения препарата в раковую опухоль. Кроме того, такие исследования помогли изобрести специальную механическую руку-манипулятор, которая осуществляет очень сложные действия внутри томографов.

Изучение космоса также способствовало изобретению лекарства от остеопороза. Оно не только лечит данное заболевание, но и позволяет проводить эффективную профилактику. Появлению способствовала разработка средств, благодаря которым космонавты защищаются от потери мышечной и костной массы, когда на них не действует гравитация. Тестирование изобретенных препаратов проводилось в космосе, так как человек в таких условиях теряет за один месяц примерно полтора процента костной массы.

Колонизация космического пространства

Ученые все чаще делают вывод, что рано или поздно придется заселять другие планеты. К такому заключению они приходят, потому что число людей на Земле постоянно увеличивается. При этом количество ресурсов планеты регулярно уменьшается. В то же время ухудшается экологическая обстановка. Ученые даже выполнили некоторые расчеты и пришли к выводу, что на Земле нормально может существовать максимум 16 миллиардов людей. Однако ухудшение жизни начнется уже в ближайшем будущем, когда нас с вами станет 8 млрд.

Такие прогнозы дали старт программам по изучению космоса. Научные изыскания направлены на изучение возможности межпланетных путешествий. Одной из рассматриваемых планет является Марс, на котором, предполагается, ранее уже существовала жизнь. К этому космическому телу регулярно запускаются зонды. На его поверхности уже работает марсоход. Он не только делает снимки поверхности планеты, но и изучает ее атмосферу и грунт.

Ученые также ведут разработку модулей, которые позволят людям жить и работать на Марсе. Этим вопросом начали заниматься еще в прошлом веке. Однако до сих пор в полной мере не решена проблема по доставке тяжелых грузов до Марса и в обратном направлении. Разрабатываются разные варианты энергоустановок для космических кораблей. Одни из них проектируются на основе солнечных батарей, а другие, возможно, будут работать на ядерном топливе. В любом случае требуется разработать такой двигатель, который позволит за минимальный промежуток времени доставить людей и оборудование на другую планету.

Заключение

Люди с самого начала своего появления вели кочевой образ жизни. В результате происходило заселение новых районов. Сегодня человек живет на всех континентах Земли, каждый из которых он изучил достаточно хорошо. Поэтому с появлением новых технологий человечество обратило свое внимание на ближний и дальний космос. Люди каждый год проводят огромное количество исследований в этой области. Они постоянно ставят перед собой новые цели. Хотя достичь желаемых результатов очень трудно, изучение космоса все же позволяет регулярно получать какую-нибудь инновационную технологию, улучшающую жизнь людей на Земле.

Специалисты по исследованию планет определили приоритеты в изучении Солнечной Системы.

Людей, родившихся уже в эпоху освоения космоса, книги о Солнечной системе, вышедшие до 1957 г., зачастую приводят в состояние шока. Как мало старшее поколение знало, не имея даже представления об огромных вулканах и каньонах Марса, по сравнению с которыми гора Эверест кажется лесным муравейником, а Большой каньон похож на кювет у обочины. Возможно, ранее считали, что под облаками Венеры могут скрываться роскошные влажные джунгли, или бескрайняя сухая пустыня, или бурлящий океан, или огромные смоляные болота — все, что угодно, но только не то, что оказалось на самом деле: огромные вулканические поля — сцены Ноева потопа из застывшей магмы. Вид Сатурна ранее представлялся унылым: два расплывчатых кольца, тогда как сегодня мы можем любоваться сотнями и тысячами изящных колечек. Спутники планет-гигантов были пятнами, а не фантастическими ландшафтами с метановыми озерами и пылевыми гейзерами.

В те годы все планеты выглядели как малые островки света, а Земля казалась гораздо больше, чем сегодня. Никто и никогда не видел нашу планету со стороны: голубой мрамор на черном бархате, покрытый тонким слоем воды и воздуха. Никто не знал, что Луна была обязана своим рождением удару, или что гибель динозавров произошла единовременно. Никто до конца не понимал, как человечество может полностью изменить окружающую среду на всей планете. Кроме того, космическая эра обогатила нас знаниями о природе и открыла новые перспективы.

С момента запуска спутника в исследованиях планет несколько раз случались взлеты и падения. Например, в 1980-е гг. работы почти застопорились. Сегодня десятки зондов различных стран бороздят Солнечную систему — от Меркурия до Плутона. Но бюджет урезают, расходы растут и не всегда приводят к нужному результату, что бросает тень на NASA. В настоящее время агентство переживает далеко не лучший период своей истории с тех пор, как 35 лет назад Никсон закрыл программу «Аполлон».

«Специалисты NASA продолжают поиск приоритетных направлений, по которым будут проводиться исследования, — говорит Энтони Джанетос (Anthony Janetos ) из Тихоокеанской северо-западной национальной лаборатории, член Национального исследовательского совета (NRC), курирующего программу NASA по наблюдению Земли. — Они исследуют космос? Они изучают человека или занимаются чистой наукой? Они рвутся к галактикам или ограничиваются Солнечной системой? Их интересуют шаттлы и космические станции или только природа нашей планеты?»

В принципе, такое развитие событий должно дать плоды. Должны возродиться не только программы с использованием автоматических зондов, но и пилотируемые космические полеты. Президент Джордж Буш определил в 2004 г. цель — ступить на поверхность Луны и Марса. Несмотря на всю спорность этой затеи, в NASA за нее ухватились. Но трудность состояла в том, что все это быстро превратилось в нефинансируемое поручение и заставило агентство пробивать стену, традиционно «защищающую» научные и пилотируемые программы от перерасхода средств. «Я полагаю, все знают, что у агентства недостаточно денег для проведения всех необходимых работ, — говорит Билл Клейбо (Bill Claybaugh ), директор отдела исследований и анализа NASA. — На космические агентства других стран деньги тоже не льются золотым дождем».

NRC временами делает шаг назад и интересуется, как обстоят дела с планетными исследованиями в мире. Поэтому мы представляем список приоритетных целей.

1. Мониторинг климата Земли

В 2005 г. комиссия Национального исследовательского совета пришла к выводу: «существует риск того, что система спутников наблюдения за окружающей средой выйдет из строя». С тех пор ситуация изменилась. NASA за пять лет перебросило $600 млн с проектов исследования Земли на программу поддержки шаттлов и космической станции. В то же время развитие новой национальной системы спутников на полярных орбитах для наблюдения Земли превысило бюджет и должно быть урезано. Это касается приборов, исследующих глобальное потепление, измеряющих падающее на Землю солнечное излучение и отражающиеся от поверхности Земли инфракрасные лучи.

В результате более 20 спутников Системы наблюдения Земли закончат функционировать еще до того, как им на смену придут новые аппараты. Ученые и инженеры надеются, что смогут некоторое время поддерживать их в рабочем состоянии. «Мы готовы работать, но сейчас нам нужен план, — утверждает Роберт Кахалан (Robert Cahalan ), руководитель отдела климата и излучения Годдардовского центра космических полетов NASA. — Нельзя ждать, пока они сломаются».

Если спутники перестанут функционировать до того, как им придет замена, то возникнет пробел в поступлении данных, затрудняющий отслеживание изменений. Например, если аппараты следующего поколения заметят, что Солнце стало ярче, то трудно будет понять, действительно ли это так, или неверно откалиброваны приборы. Если не будут проводиться непрерывные наблюдения со спутников, данный вопрос не решить. Наблюдения поверхности Земли со спутников Landsat , проводившиеся с 1972 г., уже несколько лет как прекращены, и Министерство сельского хозяйства США вынуждено покупать данные с индийских спутников для наблюдений за урожаем.

Комиссия NRC призывает восстановить финансирование и в будущем десятилетии запустить 17 новых аппаратов, следящих за ледовым покровом и содержанием двуокиси углерода, чтобы изучить влияние таких факторов на погоду и улучшить методы ее прогноза. К сожалению, исследование климата оказывается между рутинным наблюдением за погодой (задача NOAA) и наукой (этим занимается NASA). «Основная проблема в том, что никому не поручено заниматься мониторингом климата», — считает климатолог Дрю Шиндел (Drew Shindell ) из Годдардовского центра космических исследований NASA. Как и многие другие ученые, он полагает, что правительственные климатические программы, распределенные по разным ведомствам, должны быть собраны вместе и переданы одному управлению, которое будет заниматься только этой тематикой.

План действий
  • Финансировать 17 новых спутников, предлагаемых NASA в будущем десятилетии (стоимость — около $500 млн в год).
  • Основать управление по исследованию климата.

2. Подготовка защиты от астероидов

Астероидная угроза

Астероиды диаметром 10 км (убийцы динозавров) падают на землю в среднем раз в 100 млн лет. Астероиды диаметром около 1 км (глобальные разрушители) — раз в полмиллиона лет. Астероиды размером 50 м, способные разрушить город, — раз в тысячелетие.

«Обзор для космической защиты» выявил более 700 тел километрового размера, но все они не опасны для нас в ближайшие века. Однако этот обзор сможет обнаружить не более 75% таких астероидов.

Шанс, что среди необнаруженных 25% окажется астероид, который упадет на землю, мал. Средний риск составляет до 1 тыс. Погибших человек в год. Риск от астероидов меньшего размера — в среднем до 100 человек в год.

Астероид такой огромный, а космический зонд так мал... но дайте время, и даже слабая ракета сможет отклонить гигантскую скалу с ее опасной орбиты

Как и мониторинг климата, защита планеты от астероидов, по-видимому, оказалась как бы «между двумя стульями». Ни NASA, ни Европейское космическое агентство (European Space Agency , ESA) не имеют мандата на спасение человечества. Лучшее, что они сделали, — программа «Обзор для космической защиты» (Spaceguard Survey , NASA) с бюджетом $4 млн в год по поиску в околоземном пространстве тел диаметром более 1 км, которые могут причинить вред не только какому-либо региону планеты, но и Земле в целом. Однако пока никто не занимается систематическим поиском более мелких «региональных разрушителей», которых в окрестности Земли должно быть около 20 тыс. Не существует и Управления космических угроз, которое бы объявляло тревогу в случае необходимости. Если бы технология защиты существовала, понадобилось бы не менее 15 лет, чтобы обеспечить защиту от опасного вторжения. «Сейчас в США нет всеобъемлющего плана», — говорит Ларри Лемке (Larry Lemke ), инженер Эймсонского центра NASA.

На запрос Конгресса в марте 2007 г. NASA опубликовало доклад, в котором сказано, что выявление тел размером от 100 до 1000 м можно возложить на Большой обзорный телескоп (Large Sinoptic Survey Telescope , LSST), разрабатываемый для обзора неба и поиска новых объектов. Разработчики этого проекта считают, что в том виде, в каком телескоп был задуман, он сможет за 10 лет работы (2014-2024 гг.) обнаружить 80% указанных тел. При вложении в проект дополнительных $100 млн эффективность может возрасти до 90%.

Как и у всех наземных инструментов, возможности телескопа LSST ограничены. Во-первых, у него есть слепая зона: наиболее опасные объекты, движущиеся вблизи орбиты Земли немного впереди или позади нашей планеты, он может наблюдать только в лучах утренней или вечерней зари, когда солнечные лучи мешают обнаруживать их. Во-вторых, этот телескоп может определять массу астероида только косвенно — по его блеску. При этом оценка массы может различаться вдвое: большой темный астероид можно спутать с маленьким, но светлым. «А такое различие может оказаться очень важным, если нам необходима защита», — считает Клейбо.

Для решения этих проблем NASA решило построить инфракрасный космический телескоп стоимостью $500 млн и вывести его на орбиту вокруг Солнца. Он сможет фиксировать любую угрозу Земле и, наблюдая небесные тела в разных длинах волн, определять их массу с ошибкой не более 20%. «Если вы хотите все сделать правильно, то надо из космоса наблюдать в инфракрасном диапазоне», — говорит Дональд Йоманс (Donald Yeomans ) из Лаборатории реактивного движения, соавтор доклада.

Что делать, если астероид уже движется в направлении нашей планеты? Эмпирическое правило гласит: для отклонения астероида на величину радиуса Земли нужно за десять лет до столкновения изменить его скорость на миллиметр в секунду, толкая его ядерным взрывом или оттягивая гравитационным притяжением.

В 2004 г. комиссия NASA по экспедициям к околоземным объектам рекомендовала провести испытания. Согласно проекту «Дон Кихот» стоимостью $400 млн, предполагается изменить его траекторию движения за счет удара о четырехсоткилограммовое препятствие. Выброс вещества после столкновения в результате реактивного эффекта сместит направление астероида, но никто не знает, насколько сильным окажется данный эффект. Определение этого и есть главная задача проекта. Ученые должны найти тело на такой далекой орбите, чтобы случайно своим ударом не перевести его на встречный курс с Землей.

Весной 2008 г. ESA закончило предварительный проект и тут же из-за отсутствия денег положило его на полку. Для осуществления своих планов оно попробует объединить усилия с NASA и/или Японским космическим агентством (Japan Aerospace Exploration Agency , JAXA).

План действий
  • Расширенный поиск астероидов, включая мелкие тела, возможно, с помощью специального космического инфракрасного телескопа.
  • Эксперимент по управляемому отклонению астероида.
  • Развитие официальной системы оценки потенциальной опасности.

3. Поиск новой жизни

До запуска спутника ученые считали Солнечную систему настоящим раем. Затем оптимизма поубавилось. Оказалось, что сестра Земли — сущий ад. Подлетев же к пыльному Марсу, «Маринеры» обнаружили, что его покрытый кратерами ландшафт похож на лунный; сев на его поверхность, «Викинги» не смогли найти ни одной органической молекулы. Но позже обнаружились места, пригодные для жизни. Все еще подает надежды Марс. Спутники планет, особенно Европа и Энцелад, видимо, обладают большими подповерхностными морями и огромным количеством исходного вещества для формирования жизни. Даже Венера могла быть когда-то покрыта океаном. На Марсе NASA ищет не сами организмы, а следы их существования в прошлом или настоящем, ориентируясь на наличие воды. Последний зонд «Феникс», запущенный в августе, должен в 2008 г. сесть в неизученной северной полярной области. Это не марсоход, а стационарный аппарат с манипулятором, способным разрыть почву вглубь на несколько сантиметров для поиска отложений льда. Готовится к полету и «Марсианская научная лаборатория» (Mars Science Laboratory , MSL) стоимостью $1,5 млрд — марсоход размером с автомобиль, который должен быть запущен в конце 2009 г. и совершить посадку через год.

Но постепенно ученые вернутся к прямому поиску живых организмов или их остатков. В 2013 г. ESA планирует запустить зонд «ЭкзоМарс» (ExoMars ), оснащенный такой же лабораторией, как у «Викингов», и буром, способным углубиться в грунт на 2 м — достаточно, чтобы достичь слоев, где не разрушаются органические соединения.

Многие специалисты по планетам считают приоритетным направлением изучение породы, доставленной с Марса на Землю. Анализ даже небольшого ее количества даст возможность глубоко проникнуть в историю планеты, как это сделала программа «Аполлон» в отношении Луны. Проблемы с бюджетом NASA отодвинули многомиллиардный проект к 2024 г., но Агентство уже приступило к модернизации аппарата MSL, чтобы он мог сохранить образцы коллекции.

Что касается спутника Юпитера — Европы, то ученые также хотели бы иметь орбитальный аппарат, чтобы измерить, как форма и гравитационное поле спутника откликаются на приливное влияние со стороны Юпитера. Если внутри спутника жидкость, его поверхность будет подниматься и опускаться на 30 м, а если нет — всего на 1 м. Магнитометр и радар помогут заглянуть под поверхность и, возможно, нащупать океан, а фотокамеры позволят составить карту поверхности для подготовки к посадке и бурению.

Естественным продолжением работы «Кассини» вблизи Титана были бы орбитальный и посадочный аппараты. Атмосфера Титана похожа на земную, что позволяет использовать аэростат с горячим воздухом, который время от времени сможет опускаться на поверхность и брать образцы. Целью всего этого, указывает Джонатан Лунин (Jonatan Lunine ) из Аризонского университета, стал бы «анализ находящейся на поверхности органики, чтобы проверить, происходит ли продвижение в самоорганизации вещества, с которого, как думают многие специалисты, началось зарождение жизни на Земле».

В январе 2007 г. NASA приступало к рассмотрению этих проектов. Агентство планирует в 2008 г. сделать выбор между Европой и Титаном. Зонд стоимостью $2 млрд, возможно, будет запущен уже в ближайшие десять лет. Второму небесному телу придется ждать еще лет десять.

В конце концов, может оказаться, что земная жизнь уникальна. Это было бы печально, но вовсе не означало бы, что все усилия затрачены впустую. По словам Брюса Якоски (Bruce Jacosky ), директора Астробиологического центра Колорадского университета, астробиология позволяет понять, насколько разнообразной может быть жизнь, каковы ее предпосылки, и как она зарождалась на нашей планете 4 млрд лет назад.

План действий
  • Получение образцов марсианского грунта.
  • Подготовка к исследованию Европы и Титана.

4. Разгадка происхождения планет

Как и зарождение жизни, формирование планет было сложным, многоступенчатым процессом. Юпитер был первым и затем управлял другими. Как долго шло это образование? Или он зародился в едином гравитационном сжатии, как малая звезда? Сформировался ли он вдали от Солнца и затем приблизился к нему, как об этом свидетельствует аномально высокое содержание в нем тяжелых элементов? И мог ли он при этом расталкивать на своем пути небольшие планеты? Спутник Юпитера «Юнона», который NASA собирается запустить в 2011 г., должен помочь ответить на эти вопросы.

Разобраться с формированием планет помогло бы и развитие идеи зонда «Стардаст», который в 2006 г. доставил образцы пыли из комы, окружающей твердое ядро кометы. По словам руководителя проекта Дональда Браунли (Donald Brownlee ) из Вашингтонского университета, «Стардаст» показал, что кометы были колоссальными сборщиками вещества протосолнечной туманности на ранней стадии формирования Солнечной системы, которое застыло во льду и сохранилось до наших дней. «Стардаст» доставил замечательные пылинки из внутренней области Солнечной системы, из внесолнечных источников и, по-видимому, даже из разрушенных объектов типа Плутона, но их очень мало». JAXA планирует получить образцы из ядер комет.

Площадкой для астроархеологических исследования может стать и Луна. Она была своеобразным Розеттским камнем для понимания истории столкновений в молодой Солнечной системе, поскольку помогла связать относительный возраст поверхности, определенный путем подсчета кратеров, с абсолютной датировкой образцов, доставленных «Аполлоном» и российской «Луной». Но в 1960-е гг. посадочные аппараты посетили лишь несколько мест. Они не добрались до кратера Эйткен — бассейна величиной с континент на обратной стороне, возраст которого может указывать время окончания формирования планет. NASA сейчас решает вопрос о посылке туда робота, чтобы он взял образцы и доставил их на Землю.

Еще одна загадка Солнечной системы заключается в том, что астероиды Главного пояса, по-видимому, возникли до появления Марса, который, в свою очередь, сформировался раньше Земли. Похоже, что волна формирования планет шла внутрь, вероятно, спровоцированная Юпитером. Но вписывается ли Венера в эту закономерность? Ведь эта планета с ее кислотными облаками, огромным давлением и адской температурой — не самое приятное место для посадки. В 2004 г. NRC рекомендовал забросить туда аэростат, который сможет на короткое время опуститься на поверхность, взять образцы, а затем набрать необходимую высоту, чтобы проанализировать их или отправить на Землю. В середине 1980-х гг. Советский Союз уже посылал на Венеру космические аппараты, а сейчас Российское космическое агентство планирует запуск нового спускаемого аппарата.

Изучение формирования планет в некоторой степени похоже на исследования происхождения жизни. Венера расположена на внутреннем краю зоны жизни, Марс — на внешнем, а Земля — посередине. Понять различие между этими планетами значит продвинуться в поисках жизни вне Солнечной системы.

План действий
  • Получить образцы вещества с ядер комет, Луны и Венеры.

5. За переделом Солнечной системы

Два года назад легендарные «Вояджеры» преодолели финансовый кризис. Когда NASA объявило, что собирается закрыть проект, протесты общественности вынудили их продолжить работу. Ничто из созданного руками человека не удалялось от нас настолько, как «Вояджер-1»: на 103 астрономических единицы (а.е.), т. е. в 103 раза дальше, чем Земля от Солнца, и каждый год к этому добавляется по 3,6 а.е. В 2002 или 2004 г. (по разным оценкам) он достиг загадочной многослойной границы Солнечной системы, где частицы солнечного ветра сталкиваются с потоком межзвездного газа.

Но «Вояджеры» были созданы для изучения внешних планет, а не межзвездного пространства. Их плутониевые источники энергии иссякают. Уже давно в NASA думают создать специальный зонд, и доклад NRC по солнечной физике от 2004 г. советует агентству начать работу в данном направлении.

Внешние границы

Межзвездный зонд должен исследовать приграничную область Солнечной системы, где газ, выброшенный Солнцем, встречается с межзвездным газом. Он должен иметь скорость, долговечность и оснащение, которых нет у «Вояджеров» и «Пионеров»

Зонд должен измерить содержание аминокислот в межзвездных частицах, чтобы определить, сколько сложного органического вещества попало в Солнечную систему извне. Ему также необходимо найти частицы антивещества, которые могли родиться в миниатюрных черных дырах или темном веществе. Он должен определить, как граница Солнечной системы отражает вещество, включая космические лучи, способные влиять на земной климат. Еще ему надо выяснить, присутствует ли в окружающем нас межзвездном пространстве магнитное поле, которое может играть важную роль в формировании звезд. Этот зонд можно использовать как миниатюрный космический телескоп для проведения космологических наблюдений, свободных от влияния межпланетной пыли. Он помог бы изучить так называемую аномалию «Пионеров» — необъяснимую силу, действующую на два далеких космических зонда «Пионер-10» и «Пионер-11», а также проверить общую теорию относительности Эйнштейна, указав, где гравитация Солнца собирает лучи света далеких источников в фокус. С его помощью можно было бы детально изучить одну из ближайших звезд, например эпсилон Эридана, хотя чтобы добраться туда, потребуются десятки тысяч лет.

Чтобы достичь небесного тела на расстоянии сотен астрономических единиц за время жизни ученого (и плутониевого источника энергии), нужно разогнаться до скорости 15 а.е. в год. Для этого можно использовать один из трех вариантов — тяжелый, средний или легкий, соответственно, с ионным двигателем, питающимся от ядерного реактора, либо солнечный парус.

Тяжелый (36 т) и средний (1 т) зонды были разработаны в 2005 г. командами под руководством Томаса Цурбухена (Tomas Zurbuchen ) из Мичиганского университета в Анн-Арборе и Ральфа Макнатта (Ralph McNutt ) из Лаборатории прикладной физики Университета Джонса Хопкинса. Но более приемлемым для запуска выглядит самый легкий вариант. ESA рассматривает сейчас предложение международной команды ученых под руководством Роберта Виммер-Швайнгрубера (Robert Wimmer-Schweingruber ) из университета в Киле, Германия. К этому проекту может присоединиться и NASA.

Солнечный парус диаметром 200 м сможет разогнать пятисоткилограммовый зонд. После запуска с Земли он должен устремиться к Солнцу и пройти как можно ближе к нему (внутри орбиты Меркурия), чтобы поймать мощный напор солнечного света. Как спортсмен-виндсерфингист, космический корабль будет двигаться галсами. Перед орбитой Юпитера он должен сбросить парус и полететь свободно. Но прежде инженеры должны разработать достаточно легкий парус и испытать его в упрощенном варианте.

«Такой полет под эгидой ESA или NASA будет следующим логическим шагом в исследовании космоса», — считает Виммер-Швайнгрубер. На ближайшие 30 лет затраты на этот проект оцениваются в $2 млрд. Исследование планет поможет нам понять, насколько Земля вписывается в общую схему, а изучение наших межзвездных окрестностей позволит выяснить то же самое в отношении всей Солнечной системы.

Космос… Одно слово, а сколько завораживающих картин встает перед глазами! Мириады галактик, разбросанных по всей Вселенной, далекий и в то же время бесконечно близкий и родной Млечный путь, созвездия Большой и Малой Медведиц, мирно расположившихся на необъятном небосклоне… Перечислять можно до бесконечности. В этой статье мы познакомимся с историей и некоторыми интересными фактами.

Космические исследования в древности: как раньше смотрели на звезды?

В далекой-далекой древности люди не могли наблюдать планеты и кометы через мощные телескопы типа «Хаббл». Единственными приборами для того, чтобы любоваться красотой неба и совершать космические исследования, были их собственные глаза. Конечно, ничего, кроме Солнца, Луны и звезд, человеческие «телескопы» разглядеть не могли (если не считать комету в 1812 году). Поэтому людям оставалось только догадываться о том, как же на самом деле выглядят эти желтый и белый шарики в небе. Но уже тогда население земного шара отличалось внимательностью, поэтому быстро подметило, что эти два кружочка двигаются по небу, то скрываясь за горизонтом, то вновь показываясь. А еще они обнаружили, что не все звезды ведут себя одинаково: какая-то их часть остается неподвижной, а другая изменяет свое положение по сложной траектории. Отсюда и началось великое исследование космического пространства и того, что скрывается в нем.

Особых успехов на этом поприще добились древние греки. Именно они первыми открыли, что наша планета имеет форму шара. Их мнения по поводу расположения Земли относительно Солнца разделились: часть ученых считала, что вращается вокруг небесного светила, остальные полагали, что наоборот (были сторонниками геоцентрической системы мира). К единому мнению древние греки так и не пришли. Все их труды и космические исследования были запечатлены на бумаге и оформлены в целый научный труд под названием «Альмагест». Его автором и составителем является великий древний ученый Птолемей.

Эпоха Возрождения и разрушение прежних представлений о космосе

Николай Коперник - кто не слышал этого имени? Именно он в 15 веке разрушил ошибочную теорию геоцентрической системы мира и выдвинул свою, гелиоцентрическую, которая утверждала, что Земля вращается вокруг Солнца, а не наоборот. Средневековая инквизиция и церковь, к сожалению, не дремали. Подобные речи они тут же провозгласили еретическими, а последователей теории Коперника жестоко преследовали. Один из ее сторонников, Джордано Бруно, был сожжен на костре. Его имя осталось в веках, и до сих пор мы вспоминаем о великом ученом с уважением и благодарностью.

Растущий интерес к космосу

После этих событий внимание ученых к астрономии только усилилось. Космические исследования стали все более и более захватывающими. Едва начался 17 век, произошло новое масштабное открытие: исследователь Кеплер установил, что орбиты, по которым вращаются планеты вокруг Солнца, вовсе не круглые, как считалось раньше, а эллиптические. Благодаря этому событию в науке произошли серьезные изменения. В частности, открыл механику и смог описать закономерности, по которым движутся тела.

Открытие новых планет

На сегодняшний день мы знаем, что всего планет в Солнечной системе восемь. До 2006 года их количество равнялось девяти, но после самую последнюю и удаленную от тепла и света планету - Плутон - исключили из числа тел, обращающихся вокруг нашего небесного светила. Это произошло из-за его малых размеров - площадь одной только России уже больше, чем весь Плутон. Ему был присвоен статус карликовой планеты.

До 17 века люди считали, что всего в Солнечной системе планет пять. Телескопов тогда еще не было, поэтому они судили только по тем небесным телам, которые могли увидеть своими глазами. Дальше Сатурна с его ледяными кольцами ученые ничего увидеть не смогли. Наверное, мы и по сей день бы заблуждались, если бы не Галилео Галилей. Именно он изобрел телескопы и помог ученым совершить исследование других планет и увидеть остальные небесные тела Солнечной системы. Благодаря телескопу стало известно о существовании гор и кратеров на Луне, Сатурна, Марса. Также все тем же Галилео Галилеем были обнаружены пятна на Солнце. Наука не просто развивалась, она летела вперед семимильными шагами. И к началу двадцатого века ученые уже знали достаточно, чтобы построить первый и отправиться покорять звездные просторы.

Советские ученые провели значительные космические исследования и добились очень больших успехов в изучении астрономии и развитии кораблестроения. Правда, с начала 20 века прошло более 50 лет, прежде чем первый космический спутник отправился покорять просторы Вселенной. Это случилось в 1957 году. Аппарат был запущен в СССР с космодрома Байконур. Первые спутники не гнались за высокими результатами - их целью было достичь Луны. Первое устройство для исследования космоса высадилось на лунную поверхность в 1959 году. А также в 20 веке был открыт Институт космических исследований, в котором разрабатывались серьезные научные работы и совершались открытия.

Вскоре запуск спутников стал обыденным явлением, и все-таки только одна миссия по высадке на другую планету окончилась успешно. Речь идет о проекте «Аполлон», в ходе которого несколько раз, согласно официальной версии, была совершена высадка американцев на Луну.

Международная «космическая гонка»

1961 год стал памятным в истории космонавтики. Но еще раньше, в 1960-м, в космосе побывали две собаки, клички которых знает весь мир: Белка и Стрелка. Вернулись они из космоса целыми и невредимыми, прославившись и став настоящими героями.

А 12 апреля следующего года бороздить просторы Вселенной отправился Юрий Гагарин - первый человек, отважившийся покинуть пределы Земли на корабле «Восток-1».

Соединенные Штаты Америки не желали уступать СССР первенство в космической гонке, поэтому хотели отправить своего человека в космос раньше Гагарина. США проиграли и в запуске спутников: России удалось запустить аппарат на четыре месяца раньше Америки. В безвоздушном пространстве уже побывали такие покорители космоса, как Валентина Терешкова и Последний первым в мире совершил выход в открытый космос, а наиболее значительным достижением США в освоении Вселенной было только выведение космонавта в орбитальный полет.

Но, несмотря на значительные успехи СССР в «космической гонке», Америка тоже была не промах. И 16 июля 1969 года космический корабль «Аполлон-11», на борту которого находились покорители космоса в количестве пяти специалистов, стартовал к поверхности Луны. Через пять дней первый человек ступил на поверхность спутника Земли. Звали его Нил Армстронг.

Победа или поражение?

Кто же все-таки выиграл лунную гонку? На этот вопрос точного ответа нет. И СССР, и США показали себя с лучшей стороны: они модернизировали и усовершенствовали технические достижения в космическом кораблестроении, совершили множество новых открытий, взяли бесценные образцы с поверхности Луны, которые были отправлены в Институт космических исследований. Благодаря им было установлено, что спутник Земли состоит из песка и камня, а также то, что на Луне нет воздуха. Следы Нила Армстронга, оставленные более сорока лет назад на лунной поверхности, и ныне находятся там. Их просто нечему стереть: наш спутник лишен воздуха, там нет ни ветра, ни воды. И если отправиться на Луну, то можно оставить и свой след в истории - как в прямом, так и в переносном значении.

Заключение

История человечества богата и обширна, она включает в себя множество великих открытий, войн, грандиозных побед и разрушительных поражений. Освоение внеземного пространства и современные космические исследования занимают по праву далеко не последнее место на страницах истории. Но ничего этого не было бы, не будь таких отважных и самоотверженных людей, как Николай Коперник, Юрий Гагарин, Сергей Королев, Галилео Галилей, Джордано Бруно и многих-многих других. Все эти великие люди отличались выдающимся умом, развитыми способностями к изучению физики и математики, сильным характером и железной волей. Нам есть чему у них поучиться, мы можем перенять от этих деятелей науки бесценный опыт и положительные качества и черты характера. Если человечество будет стараться походить на них, много читать, тренироваться, успешно учиться в школе и университете, то можно с уверенностью сказать, что у нас впереди еще очень много великих открытий, и дальний космос вскоре будет исследован. И, как поется в одной знаменитой песне, на пыльных тропинках далеких планет останутся наши следы.

Изучение космоса началось еще с самых древних времен, когда человек только учился считать по звездам, выделяя созвездия. И только всего четыреста лет назад, после изобретения телескопа, астрономия начала стремительно развиваться принося в науку все новые открытия.

XVII век стал переходным веком для астрономии, тогда начали применять научный метод в исследовании космоса, благодаря которому был открыт Млечный путь, другие звездные скопления и туманности. А с созданием спектроскопа, который способен разложить через призму свет, излучаемый небесным объектом, ученые научились измерять данные небесных тел, такие, как температура, химический состав, масса и другие измерения.

Начиная с конца XIX века астрономия вступила в фазу многочисленных открытий и достижений, главным прорывом науки в XX веке стало запуск первого спутника в космос, первый полет человека в космос, выход в открытое космическое пространство, высадка на луне и космические миссии к планетам Солнечной системы. Изобретения сверхмощных квантовых компьютеров в XIX веке также обещают многие новые изучения, как уже известных планет и звезд, так и открытия новых далеких уголков вселенной.

Просмотров